Thermal Degradation Characterization of Carbon–Kenaf Hybrid Composites in High Heat Environments for Automotive Cooling System Applications
DOI:
https://doi.org/10.52188/jendelaaswaja.v6i3.1532Keywords:
Hybrid_Composite, Thermal_Degradation, Carbon-Kenaf Fiber, Automative_Cooling_SystemReferences
Asim, M., Jawaid, M., & Nasir, M. (2020). Effect of hybridization on mechanical and thermal behavior of kenaf–carbon composites. Composites Part B: Engineering, 184, 107746.
Aruchamy, K., & Ramasamy, S. (2021). Comparative study on the thermal stability of carbon–kenaf hybrid laminates using TGA and DSC. Composite Interfaces, 28(9), 871–887.
Hassan, A., et al. (2023). Investigation on degradation behavior of natural fiber reinforced composites at elevated temperatures. Thermochimica Acta, 717, 179280.
Khan, M. Z., et al. (2022). Characterization of thermal aging effects on hybrid fiber composites for under-hood automotive components. Materials Today Communications, 33, 104609.
Lim, K. S., et al. (2024). High-temperature fatigue and oxidation resistance of carbon/kenaf hybrid composites. Engineering Science and Technology, 45, 102191.
Nguyen, T. A., et al. (2023). Finite element modeling of hybrid carbon/kenaf composites for automotive structures. Mechanics of Advanced Materials and Structures, 30(11), 1205–1218.
Sapuan, S. M., et al. (2021). Thermal performance of hybrid carbon/kenaf reinforced epoxy composites for automotive applications. Journal of Materials Research and Technology, 12, 1221–1232.
Saba, N., et al. (2020). Hybrid natural–synthetic composites in vehicle design: A sustainability approach. Renewable Materials Journal, 5(3), 201–215.
Sudin, R., & Ahmad, I. (2020). Natural fiber hybrid composites in vehicle cooling systems: Thermal evaluation. Industrial Crops and Products, 158, 112997.
Yahaya, R., et al. (2022). Thermal degradation analysis of kenaf–carbon hybrid composites under high temperature exposure. Polymers, 14(6), 1189.
