Analisis Pengaruh Massa Beban Terhadap Koefisien Redaman Menggunakan Software Python

Authors

  • Stevi Silahooy Universitas Pattimura
  • Delpina Nggolaon Universitas Pattimura
  • Aufa Maulida Fitrianingrum Universitas Negeri Manado

DOI:

https://doi.org/10.52188/jpfs.v7i1.703

Keywords:

Damping Coeffisien, Load Mass, Damped Oscillation, Machine Learning

Abstract

This research aims to determine the effect of load mass on the damping coefficient value. The method used in this research is an experimental method where loads with varying masses of 100gr, 120gr, and 140gr are oscillated into three types of liquid, namely water, our oil, and tropical oil. The analysis is based on damped oscillations using Python software which aims to process the data because with the training model in it it is hoped that it will be able to provide more accurate results. Based on the results of data analysis, the damping coefficients (b) for water, minyak kita oil, and tropical oil are respectively (0.0412, 0.0505, 0.0533), (0.1068, 0.1181, 0.1364), and (0.1035, 0.1299, 0.1436). These results indicate that the greater the mass of the load, the greater the resulting damping coefficient.

References

Acu, Y., Lapanporo B. P., & Kushadiwijayanto A. A. (2017). Model Sederhana Gerak Osilator dengan Massa Berubah Terhadap Waktu Menggunakan Metode Runge Kutta. POSITRON,7(2), 42. https://doi.org/10.26418/positron.v7i2.23276

Aulia, M. R., Zannah, N., Zakiah, S., Darajat, A., Atmojo, T., & Karina, W. (2018). OSILASI TEREDAM PADA PEGAS DENGAN MEDIUM FLUIDA. JoTaLP: Journal of Teaching and Learning Physics, 3, 22–26. https://doi.org/10.15575/jtlp.v3i1.65479

Azmi, U., Hadi, Z. N., & Soraya, S. (2020). ARDL METHOD: Forecasting Data Curah Hujan Harian NTB. Jurnal Varian, 3(2), 73–82. https://doi.org/10.30812/varian.v3i2.627

Giancoli, D. C. (2005). Physics Principles with Application. In Pearson Education, Inc (6th ed., pp. 287–300). Pearson Education, Inc.

Halliday & Resnick. (2011). Fundamentals of Physics. 9th Edition.

Hendarwati, E. K., Lepong, P., & Suyitno. (2023). Pemilihan Semivariogram Terbaik Berdasarkan Root Mean Square Error (RMSE) pada Data Spasial Eksplorasi Emas Awak Mas. Jurnal Geosains Kutai Basin, 6(1), 2023.

Kusuma, P. D. (2020). Machine Learning; Teori, Program, dan Studi Kasus. In CV Budi Utama. CV Budi Utama.

Mukharomah, F., Mutiarani, A., Supiyadi, & Sulhadi. (2021). Gerak Harmonik Teredam untuk Menentukan Koefisien Viskositas Fluida Berbantuan Software Tracker Video. WaPFi (Wahana Pendidikan Fisika), 6(1). https://physlets.org/tracker/.

Selvira, C. A., Subaedi, A. N., Azzahra, N. A., Novitasari, O., & Antarnusa, G. (2020). Meningkat Keakuratan Simulasi Osilasi Harmonik Teredam pada Pegas Menggunakan Tracker Video Analysis and Modelling Tool. In Prosiding Seminar Nasional Pendidikan Fisika (Vol. 3, Issue 1). https://jurnal.untirta.ac.id/index.php/sendikfi/index

Serway, R. A., & Jewett, J. W. (2004). Physics for Scientists and Engineers . In Physics for Scientists and Engineers (6th ed.). Thomson Brooks/Cole.

Serway, R. A., & Jewett, J. W. (2008). Physics for Scientists and Engineers with Modern Physics . In Thomson Higher Education (7th ed., pp. 418–447). Thomson Higher Education.

Susilo, A., Yunianto, M., & Variani, V. I. (2012). Simulasi Gerak Harmonik Sederhana dan Osilasi Teredam pada Cassy-E 524000. In Indonesian Journal of Applied Physics (Vol. 2, Issue 2).

Tirtasari, Y., Dzar, F., Latief, E., & Amahoru, A. H. (2016). Penggunaan Teknik Video Tracking Untuk Mengamati Fenomena Osilasi Teredam Pada Pegas. Prosiding SNIPS.

Young & Freedman. (2008). University Physics with Modern Physics. In Pearson Addison Wesley (12th ed., pp. 456–485). Pearson Education International.

Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., & Ye, L. (2022). A review of the application of machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107–116.

Published

2024-03-31

How to Cite

Silahooy, S., Nggolaon, D. ., & Fitrianingrum, A. M. (2024). Analisis Pengaruh Massa Beban Terhadap Koefisien Redaman Menggunakan Software Python. Jurnal Pendidikan Fisika Dan Sains (JPFS), 7(1), 28-34. https://doi.org/10.52188/jpfs.v7i1.703

Issue

Section

Articles